Lecture 13 on Oct. 282013

Today, we study the integration of an analytic function on closed curves. In what follows, R is a rectangle with length a and width b. Without loss of generality, we assume $a>b$. We use Δ to denote a disk. The first theorem is

Theorem 0.1. If f is an analytic function in R, then

$$
\int_{\partial R} f(z) \mathrm{d} z=0
$$

where ∂R is the boundary contour of R.
We can also weaken the assumption in Theorem 0.1 to get
Theorem 0.2. If f is analytic on $R \backslash\left\{z_{1}, \ldots, z_{n}\right\}$ and moreover

$$
\begin{equation*}
\lim _{z \rightarrow z_{j}}\left(z-z_{j}\right) f(z)=0, \quad \text { for all } j=1, \ldots, n \tag{0.1}
\end{equation*}
$$

then it holds

$$
\int_{\partial R} f(z) \mathrm{d} z=0
$$

We sketch the proof of Theorems 0.1-0.2 in the following. Reads should refer to the book of Ahlfors for more detailed arguments.

Proof of Theorem 0.1. Inductively if we have R_{n} a sub-rectangle of R, then we can bisect it into four identical rectangles, denoted by $R_{n, 1}, R_{n, 2}, R_{n, 3}, R_{n, 4}$, respectively. Clearly we have

$$
\int_{\partial R_{n}} f(z) \mathrm{d} z=\int_{\partial R_{n, 1}} f(z) \mathrm{d} z+\int_{\partial R_{n, 2}} f(z) \mathrm{d} z+\int_{\partial R_{n, 3}} f(z) \mathrm{d} z+\int_{\partial R_{n, 4}} f(z) \mathrm{d} z
$$

Using triangle inequality, for some $i=1,2,3,4$, it must hold

$$
\left|\int_{\partial R_{n, i}} f(z) \mathrm{d} z\right| \geq \frac{1}{4}\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right| .
$$

Now we denote by R_{n+1} the $R_{n, i}$. Setting $R_{1}=R$, we get a sequence of decreasing rectangles, say $\left\{R_{n}\right\}$, such that

$$
\begin{equation*}
\left|\int_{\partial R_{n+1}} f(z) \mathrm{d} z\right| \geq \frac{1}{4}\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right|, \quad \text { for all } n \geq 1 \tag{0.2}
\end{equation*}
$$

The above construction has four straightforward consequences. 1. $R_{n} \longrightarrow z^{*}$ for some z^{*} in R; 2. z^{*} must be in R_{n} for all n; 3. for any z in R_{n}, the distance between z and z^{*} is bounded by the length of diagonal of R_{n}. More precisely

$$
\begin{equation*}
\left|z-z^{*}\right| \leq \text { length of diagonal of } R_{n}=\sqrt{\frac{a^{2}}{4^{n}}+\frac{b^{2}}{4^{n}}}<\frac{\sqrt{2} a}{2^{n}}<\frac{a}{2^{n-1}} \tag{0.3}
\end{equation*}
$$

4. the length of ∂R_{n} is bounded by

$$
\begin{equation*}
\text { length of } \partial R_{n}=\frac{a}{2^{n-1}}+\frac{b}{2^{n-1}}<\frac{a}{2^{n-2}} \tag{0.4}
\end{equation*}
$$

Since f is analytic at z^{*}, we have

$$
\lim _{z \rightarrow z^{*}}\left|\frac{f(z)-f\left(z^{*}\right)}{z-z^{*}}-f^{\prime}\left(z^{*}\right)\right|=0
$$

Therefore for any $\epsilon>0$, we can find a $\delta(\epsilon)>0$ suitably small so that

$$
\left|f(z)-f\left(z^{*}\right)-f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right)\right|<\epsilon\left|z-z^{*}\right|, \quad \text { for all } z \text { with }\left|z-z^{*}\right|<\delta(\epsilon)
$$

Noticing that R_{n} is shrinking to the point z^{*}, when n is large enough, any point w in R_{n} satisfies the condition $\left|w-z^{*}\right|<\delta(\epsilon)$. Therefore we know that for n large enough,

$$
\left|f(z)-f\left(z^{*}\right)-f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right)\right|<\epsilon\left|z-z^{*}\right|, \quad \text { for all } z \text { in } R_{n}
$$

Using this estimate, we know that

$$
\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right|=\mid \int_{\partial R_{n}} f(z)-f\left(z^{\prime}-f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right) \mathrm{d} z\left|<\epsilon \int_{\partial R_{n}}\right| z-z^{*}| | \mathrm{d} z \mid .\right.
$$

Applying (0.3)-(0.4) to the right-hand side above, it follows that

$$
\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right|<\frac{8 a^{2}}{4^{n}} \epsilon
$$

By (0.2), one can easily show that

$$
\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right| \geq \frac{1}{4^{n}}\left|\int_{\partial R} f(z) \mathrm{d} z\right| .
$$

Therefore the above two estimates show that

$$
\left|\int_{\partial R} f(z) \mathrm{d} z\right|<8 a^{2} \epsilon
$$

Since ϵ is arbitrary, the proof is done.
the proof of Theorem 0.2 is shown as follows.
Proof of Theorem 0.2. Without loss of generality, we assume f is analytic on $R \backslash\left\{z_{0}\right\}$. Letting R_{n} be a square centered at z_{0} with dimension $1 / 2^{n}$. Clearly by Theorem 0.1 , we have

$$
\begin{equation*}
\int_{\partial R} f(z) \mathrm{d} z=\int_{\partial R_{n}} f(z) \mathrm{d} z \tag{0.5}
\end{equation*}
$$

By the assumption in Theorem 0.2 , we have

$$
\left|z-z_{0}\right||f(z)|<\epsilon, \quad \text { provided that }\left|z-z_{0}\right|<\delta(\epsilon)
$$

therefore when n is large enough, it follows

$$
\left|z-z_{0}\right||f(z)|<\epsilon, \quad \text { for all } z \text { in } R_{n}
$$

Applying the above estimate to (0.5), one can easily get

$$
\left|\int_{\partial R} f(z) \mathrm{d} z\right|=\left|\int_{\partial R_{n}} f(z) \mathrm{d} z\right| \leq \epsilon \int_{\partial R_{n}}\left|z-z_{0}\right|^{-1}|\mathrm{~d} z| .
$$

Since z is on $\partial R_{n},\left|z-z_{0}\right| \geq 1 / 2^{n+1}$. So the following estimate holds

$$
\int_{\partial R_{n}}\left|z-z_{0}\right|^{-1}|\mathrm{~d} z| \leq 2^{n+1} \frac{1}{2^{n-2}}=8
$$

Using the above two estimate, we get

$$
\left|\int_{\partial R} f(z) \mathrm{d} z\right|<8 \epsilon
$$

The proof is finished since ϵ is arbitrary.

With Theorems 0.1-0.2, the following two results are trivial.
Theorem 0.3. If f is analytic in Δ, then for all γ a closed curve in Ω, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

Proof. Fixing z_{0} in Δ, for any z in Δ, we can connect z_{0} and z by vertical and horizontal segments. Define

$$
F(z)=\int_{\Gamma} f(w) \mathrm{d} w
$$

where Γ connects z_{0} and z. Meanwhile Γ is formed by vertical and horizontal segments. Using Theorem $0.1, F(z)$ is independent of the choice of vertical and horizontal segments. Moreover, we also know that F is analytic and satisfies $f(z)=F^{\prime}(z)$. Using the conclusion from Lecture 14 , the proof is done.

Same arguments can also be applied to show that
Theorem 0.4. If f is analytic in $\Delta^{\prime}=\Delta \backslash\left\{z_{1}, \ldots, z_{n}\right\}$ and

$$
\lim _{z \rightarrow z_{j}}\left(z-z_{j}\right) f(z)=0, \quad, \text { for all } j=1, \ldots, n
$$

then we have

$$
\int_{\gamma} f(z) \mathrm{d} z=0, \quad \text { for all } \gamma \text { a closed curve in } \Delta^{\prime}
$$

One should notice that the γ in Theorem 0.4 can not pass the points in $\left\{z_{1}, \ldots, z_{n}\right\}$. Theorem 0.4 can be used to show the famous Cauchy integral formula. In fact, if f is analytic in Δ, then $F(z)=$ $\left(f(z)-f\left(z_{0}\right)\right) /\left(z-z_{0}\right)$ satisfies all assumptions in Theorem 0.4. Here z_{0} is a point in Δ. Therefore if we have γ a closed curve in Δ, then

$$
\int_{\gamma} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \mathrm{~d} z=0
$$

provided that z_{0} is not on γ. Rewrite the above equality, we get

$$
\begin{equation*}
f\left(z_{0}\right) \int_{\gamma} \frac{1}{z-z_{0}} \mathrm{~d} z=\int_{\gamma} \frac{f(z)}{z-z_{0}} \mathrm{~d} z \tag{0.6}
\end{equation*}
$$

In what follows, we try to understand the integral on the left-hand side of (0.6). Supposing that $z(t)$ is a parametrization of $\gamma . t$ is running within the interval $[\alpha, \beta]$. Clearly we have $z(\alpha)=z(\beta)$ since γ is a closed curve. Letting

$$
h(t)=\int_{\alpha}^{t} \frac{z^{\prime}(s)}{z(s)-z_{0}} \mathrm{~d} s, \quad \text { for all } t \in[\alpha, \beta]
$$

by fundamental theorem of calculus, one has

$$
h^{\prime}(t)=\frac{z^{\prime}(t)}{z(t)-z_{0}}
$$

Defining

$$
H(t)=e^{-h(t)}\left(z(t)-z_{0}\right)
$$

then by product rule and chain rule, we have

$$
H^{\prime}(t)=e^{-h(t)}\left(z^{\prime}(t)-h^{\prime}(t)\left(z(t)-z_{0}\right)\right)=0
$$

Thereofore $H(t)$ is a constant. it shows that

$$
H(\beta)=e^{-h(\beta)}\left(z(\beta)-z_{0}\right)=H(\alpha)=z_{\alpha}-z_{0}
$$

Furthermore, we have $e^{h(\beta)}=1$. that is $h(\beta)=2 k \pi i$, where k is some integer. $h(\beta)$ is the integral on the left-hand side of (0.6). Hence we know from (0.6) that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i k} \int_{\gamma} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

One should notice that the integer k depends only on z_{0} and the choice of closed curve γ. So in the following, we define this k to be the index of z_{0} with respect to γ.

Definition 0.5. Given z_{0} and a closed curve γ, here z_{0} is not on γ then we define

$$
n\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-z_{0}} \mathrm{~d} z
$$

$n\left(\gamma, z_{0}\right)$ is called the index of z_{0} with respect to γ.

