
Lecture 13 on Oct. 28 2013

Today, we study the integration of an analytic function on closed curves. In what follows, R is a rectangle
with length a and width b. Without loss of generality, we assume a > b. We use ∆ to denote a disk. The
first theorem is

Theorem 0.1. If f is an analytic function in R, then∫
∂R

f(z) dz = 0,

where ∂R is the boundary contour of R.

We can also weaken the assumption in Theorem 0.1 to get

Theorem 0.2. If f is analytic on R \ {z1, ..., zn} and moreover

lim
z→zj

(z − zj)f(z) = 0, for all j = 1, ..., n, (0.1)

then it holds ∫
∂R

f(z) dz = 0.

We sketch the proof of Theorems 0.1-0.2 in the following. Reads should refer to the book of Ahlfors for
more detailed arguments.

Proof of Theorem 0.1. Inductively if we have Rn a sub-rectangle of R, then we can bisect it into four identical
rectangles, denoted by Rn,1, Rn,2, Rn,3, Rn,4, respectively. Clearly we have∫

∂Rn

f(z) dz =

∫
∂Rn,1

f(z) dz +

∫
∂Rn,2

f(z) dz +

∫
∂Rn,3

f(z) dz +

∫
∂Rn,4

f(z) dz.

Using triangle inequality, for some i = 1, 2, 3, 4, it must hold∣∣∣∣∣
∫
∂Rn,i

f(z) dz

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ .
Now we denote by Rn+1 the Rn,i. Setting R1 = R, we get a sequence of decreasing rectangles, say {Rn},
such that ∣∣∣∣∣

∫
∂Rn+1

f(z) dz

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ , for all n ≥ 1. (0.2)

The above construction has four straightforward consequences. 1. Rn −→ z∗ for some z∗ in R; 2. z∗ must
be in Rn for all n; 3. for any z in Rn, the distance between z and z∗ is bounded by the length of diagonal
of Rn. More precisely

|z − z∗| ≤ length of diagonal of Rn =

√
a2

4n
+
b2

4n
<

√
2a

2n
<

a

2n−1
; (0.3)

4. the length of ∂Rn is bounded by

length of ∂Rn =
a

2n−1
+

b

2n−1
<

a

2n−2
. (0.4)

Since f is analytic at z∗, we have

lim
z→z∗

∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ = 0.
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Therefore for any ε > 0, we can find a δ(ε) > 0 suitably small so that

|f(z)− f(z∗)− f ′(z∗)(z − z∗)| < ε|z − z∗|, for all z with |z − z∗| < δ(ε).

Noticing that Rn is shrinking to the point z∗, when n is large enough, any point w in Rn satisfies the
condition |w − z∗| < δ(ε). Therefore we know that for n large enough,

|f(z)− f(z∗)− f ′(z∗)(z − z∗)| < ε|z − z∗|, for all z in Rn.

Using this estimate, we know that∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂Rn

f(z)− f(z) − f ′(z∗)(z − z∗) dz

∣∣∣∣ < ε

∫
∂Rn

|z − z∗| |dz|.

Applying (0.3)-(0.4) to the right-hand side above, it follows that∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ < 8a2

4n
ε.

By (0.2), one can easily show that∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
∂R

f(z) dz

∣∣∣∣ .
Therefore the above two estimates show that∣∣∣∣∫

∂R

f(z) dz

∣∣∣∣ < 8a2 ε.

Since ε is arbitrary, the proof is done.

the proof of Theorem 0.2 is shown as follows.

Proof of Theorem 0.2. Without loss of generality, we assume f is analytic on R \ {z0}. Letting Rn be a
square centered at z0 with dimension 1/2n. Clearly by Theorem 0.1, we have∫

∂R

f(z) dz =

∫
∂Rn

f(z) dz. (0.5)

By the assumption in Theorem 0.2, we have

|z − z0| |f(z)| < ε, provided that |z − z0| < δ(ε).

therefore when n is large enough, it follows

|z − z0| |f(z)| < ε, for all z in Rn.

Applying the above estimate to (0.5), one can easily get∣∣∣∣∫
∂R

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ ≤ ε ∫
∂Rn

|z − z0|−1|dz|.

Since z is on ∂Rn, |z − z0| ≥ 1/2n+1. So the following estimate holds∫
∂Rn

|z − z0|−1|dz| ≤ 2n+1 1

2n−2
= 8.

Using the above two estimate, we get ∣∣∣∣∫
∂R

f(z) dz

∣∣∣∣ < 8ε.

The proof is finished since ε is arbitrary.
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With Theorems 0.1-0.2, the following two results are trivial.

Theorem 0.3. If f is analytic in ∆, then for all γ a closed curve in Ω, we have∫
γ

f(z) dz = 0.

Proof. Fixing z0 in ∆, for any z in ∆, we can connect z0 and z by vertical and horizontal segments. Define

F (z) =

∫
Γ

f(w) dw,

where Γ connects z0 and z. Meanwhile Γ is formed by vertical and horizontal segments. Using Theorem
0.1, F (z) is independent of the choice of vertical and horizontal segments. Moreover, we also know that F
is analytic and satisfies f(z) = F ′(z). Using the conclusion from Lecture 14, the proof is done.

Same arguments can also be applied to show that

Theorem 0.4. If f is analytic in ∆′ = ∆ \ {z1, ..., zn} and

lim
z→zj

(z − zj)f(z) = 0, , for all j = 1, ..., n,

then we have ∫
γ

f(z) dz = 0, for all γ a closed curve in ∆′.

One should notice that the γ in Theorem 0.4 can not pass the points in {z1, ..., zn}. Theorem 0.4
can be used to show the famous Cauchy integral formula. In fact, if f is analytic in ∆, then F (z) =
(f(z) − f(z0))/(z − z0) satisfies all assumptions in Theorem 0.4. Here z0 is a point in ∆. Therefore if we
have γ a closed curve in ∆, then ∫

γ

f(z)− f(z0)

z − z0
dz = 0,

provided that z0 is not on γ. Rewrite the above equality, we get

f(z0)

∫
γ

1

z − z0
dz =

∫
γ

f(z)

z − z0
dz. (0.6)

In what follows, we try to understand the integral on the left-hand side of (0.6). Supposing that z(t) is a
parametrization of γ. t is running within the interval [α, β]. Clearly we have z(α) = z(β) since γ is a closed
curve. Letting

h(t) =

∫ t

α

z′(s)

z(s)− z0
ds, for all t ∈ [α, β],

by fundamental theorem of calculus, one has

h′(t) =
z′(t)

z(t)− z0
.

Defining

H(t) = e−h(t)(z(t)− z0),

then by product rule and chain rule, we have

H ′(t) = e−h(t) (z′(t)− h′(t)(z(t)− z0)) = 0.
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Thereofore H(t) is a constant. it shows that

H(β) = e−h(β)(z(β)− z0) = H(α) = zα − z0.

Furthermore, we have eh(β) = 1. that is h(β) = 2kπi, where k is some integer. h(β) is the integral on the
left-hand side of (0.6). Hence we know from (0.6) that

f(z0) =
1

2πik

∫
γ

f(z)

z − z0
dz.

One should notice that the integer k depends only on z0 and the choice of closed curve γ. So in the following,
we define this k to be the index of z0 with respect to γ.

Definition 0.5. Given z0 and a closed curve γ, here z0 is not on γ then we define

n(γ, z0) =
1

2πi

∫
γ

1

z − z0
dz.

n(γ, z0) is called the index of z0 with respect to γ.

4


